Adiabatic Work Interactions - CHAPTER 3

An interaction between two closed systems for which all events external to each of the two systems can be duplicated entirely by the rise and fall of equal weights in a gravitational field.

Example:

Is this an adiabatic work interaction?
Between which systems? $A \leftrightarrow B$ Yes √

A' \leftrightarrow B' No ×

Definition of Energy - POSTULATE III

For any states A and B of a closed system, there is at least one process that involves just adiabatic work interactions between the system and its environment and takes the system from state $A \rightarrow B$ or from $B \rightarrow A$. The amount of work required (or produced) is determined uniquely by specifying states A and B.

This allows us to define the energy difference $E_A - E_B = -W_{A \rightarrow B}$ ↑ negative
From postulate I: for simple systems,
\[E = U = \mathcal{E} \ (N+2 \ \text{independent variables}) \]

For composite simple

Definition of heat \(Q \)

For a non-adiabatic process:
\[Q = E_{\text{final}} - E_{\text{initial}} - W \] ("missing work")

Old sign convention from days of heat engines (not used)

\(W \) is positive when performed by the system
\(Q \) is positive when "added" to the system

Now, we need to make a link between thermometric temperature and the direction of heat interactions - consider insulated composite system with an internal diathermal well:

Any interaction between \(A \) and \(B \) must be a pure heat interaction
\[\Delta E_A = -\Delta E_B \Rightarrow Q_A = -Q_B \]
\[W = 0 \]

From experience, we know that heat interactions stop when the thermometric temperatures of \(A \) and \(B \) are the same \(\rightarrow \) generalize as

Postulate IV

If the systems \(A-C \) and \(B-C \) have no heat interactions when connected by nonadiabatic walls, there will be no heat interaction if \(A \) and \(B \) are also connected
First Law, Closed Systems

\[\Delta E = Q + W \]
\[\Delta E = \delta Q + \delta W \] ; use \(\delta \) to distinguish between state function \(E \) and non-state functions \(Q, W \).

Examples 3.3 + 3.4

![Diagram of a system with pistons](image)

A: He 2 bar
B: He 1 bar
L = 10 cm
300 K
300 K

When stops are removed, pistons move - there is some friction, and the pistons eventually stop when the pressures are equal.

He is an ideal gas - a substance for which:

\[PV = NRT \]

Define \(C_v = \frac{\partial U}{\partial T} \) at constant volume.

What is the final temperature in the two compartments?

For Helium, \(C_V = \text{constant} \), so that \(U = u_0 + C_V T \)

First-law balance, total system \(A + B \):

\[\Delta E = \delta Q + \delta W \Rightarrow \Delta U_A + \Delta U_B = 0 \Rightarrow \]

\[\delta Q \neq 0 \]

\[\Delta U_A = - \Delta U_B \quad \text{(1)} \]

\[\Delta U_A = N_A \cdot \delta u_A = N_A \cdot C_v \cdot (T_A, f - T_A, i) \]

\[\Delta U_B = N_B \cdot \delta u_B = N_B \cdot C_v \cdot (T_B, f - T_B, i) \]
\[\Rightarrow \quad N_A \cdot \chi_i (T_{A,i} - T_{A,i}) = -N_B \cdot \chi_i (T_{B,i} - T_{B,i}) \quad (2) \]

From Equation-of-State:

\[N_A = \frac{P_{A,i} \cdot V_{A,i}}{RT_{A,i}} \quad (3) \]
\[N_B = \frac{P_{B,i} \cdot V_{B,i}}{RT_{B,i}} \quad (4) \]

(a) Rod connecting pistons is metallic (adiabatic)

\[T_{A,i} = T_{B,i} = T_e \quad (2) \quad \Rightarrow \quad T_e = \frac{N_AT_{A,i} + N_BT_{B,i}}{N_A + N_B} \quad (5) \]

with \(T_{A,i} = T_{B,i} = T_i \quad \Rightarrow \quad T_e = T_i \)

(b) Rod connecting pistons is insulating

→ problem cannot be solved without further assumptions on the path: how is friction distributed between \(A \) and \(B \)?

Two limiting cases: no friction in \(A \) → \(T_{A,f} = 267 \text{ K} \)

\(T_{B,f} = 366 \text{ K} \)

no friction in \(B \) → \(T_{A,f} = 270 \text{ K} \)

\(T_{B,f} = 360 \text{ K} \)

First Law, Open Systems

For open systems, we can redefine the boundaries so as to use the relationships of closed systems:

Consider open system over a short period of time:

\[\delta Q_o \]

\[\delta W_o \]

\[\delta \text{Pin at Pin} \]

\[\vec{V}_{In} \]

\[\vec{V}_{Un} \]
System that includes entering mass at pressure \(P_{in}\), with sp. volume \(V_{in}\) and energy \(U_{in}\) is closed:

\[
dE = \delta Q_\sigma + \delta W_\sigma + \text{work performed on system by environment, to "push" \(\delta E_{in}\) miles into system against pressure \(P_{in}\)}
\]

Original (open) system:

\[
dE = dE_\sigma + \delta E_{in}U_{in}
\]

is initially missing \(\delta E_{in}\)

\[1 + 2 \Rightarrow dE = \delta Q_\sigma + \delta W_\sigma + (U_{in} + P_{in}V_{in}) \delta E_{in}
\]

Define **enthalpy** \(H = U + PV\) (for simple systems only!)

\[3 \Rightarrow dE = \delta Q_\sigma + \delta W_\sigma + H_{in} \delta E_{in}
\]

If system is simple, \(E \rightarrow U\), generalize to multiple entering/leaving streams:

\[
dU = \delta Q_\sigma + \delta W_\sigma + \sum_{\text{in}} H_{in} \delta E_{in} - \sum_{\text{out}} H_{out} \delta E_{out}
\]

First Law, Open Systems, differential form

or to take into account kinetic + potential energy:

\[
dE = \delta Q_\sigma + \delta W_\sigma + \sum_{\text{in}} \left[H_{in} + g_{z_{in}} + \frac{V_{in}^2}{2}\right] \delta E_{in} - \sum_{\text{out}} \left[H_{out} + g_{z_{out}} + \frac{V_{out}^2}{2}\right] \delta E_{out}
\]