FUNDAMENTAL EQUATION

From Postulate I, we know that we can write

\[U = U(S, V, N_1, \ldots, N_n) \]
Energy Equation

or \[S = S(U, V, N_1, \ldots, N_n) \]
Entropy Equation

Why? \(U \) and \(S \) can always be varied independently.

Both equations deserve to be called "fundamental" -

- They relate quantities appearing in 1st and 2nd Law
- Involve only extensive properties (no external constr.)

First order in mass

\[(T, P) \ on \ system \]

Differential form of Fundam. Equation (F.E)

In energy representation

\[dU = TdS - PdV + \sum \mu_i \, dN_i \]

Derivatives of F.E

\[
\begin{align*}
\left(\frac{\partial U}{\partial S} \right)_{V, N_1, \ldots, N_n} &= T \\
\left(\frac{\partial U}{\partial S} \right)_{S, N_1, \ldots, N_n} &= -P \\
\left(\frac{\partial U}{\partial N_j} \right)_{S, V, N_1, \ldots, N_{i, j}} &= \mu_j
\end{align*}
\]

Intensive Variables

(0th - order in mass)

this means all \(i \) except \(j \)

Euler's theorem (App. C in T+m) states that:

\[
\delta(g(a, b, kx, ky)) = k^2 \delta(9, 10, x, y) = 3
\]
\[h_F(a_1, b, x, y) = x \left(\frac{\partial h}{\partial a_1} \right)_{a_1, b, x, y} + y \left(\frac{\partial h}{\partial y} \right)_{a_1, b, x, y} \]

Applying Euler's theorem, for \(h = 1 \) (extensive variables)

Integrated form of

\[U = TS - PV + \sum_i \mu_i N_i \]

\(U \) is still a function of \(S, V, N_1, \ldots, N_n \) and

\[T = T(S, V, N_1, \ldots, N_n) \quad \mu_i = \mu_i(S, V, N_1, \ldots, N_n) \]

Digression: Intensive properties are only functions of \(n+1 \) independently variable intensive props:

\[b = \phi(c_1, c_2, \ldots, c_{n+1}, N) \] according to Postulate 1

\[b = \phi(c_1, c_2, \ldots, c_{n+1}, N) \]

Euler: Integrate using \(\theta = \phi \)

\[\phi = \left(\frac{\partial b}{\partial N} \right) c_1, c_2, \ldots, c_{n+1} \rightarrow \left(\frac{\partial b}{\partial N} \right) c_1, c_2, \ldots, c_{n+1} = \phi \]

For example, \(\mu = \mu(T, P) \) for a pure component

\[U: \text{extensive} \quad U: \text{intensive} \]

\[\left(\frac{\partial U}{\partial N} \right)_S, V = \mu \quad \left(\frac{\partial U}{\partial N} \right)_S, V = \phi \]

\[\left(\frac{\partial U}{\partial N} \right)_S, V = \phi \quad \left(\frac{\partial U}{\partial N} \right)_S, V = \left(\frac{\partial (N\mu)}{\partial N} \right) \]

\[U + N \left(\frac{\partial U}{\partial N} \right)_S, V = \mu \]

Since \(U \neq h \), \(\left(\frac{\partial U}{\partial N} \right)_S, V \neq \phi \)
Now, reconsider the expressions

\[u = u (s, v, n_1, \ldots, n_n) \] \[T = T (s, v, n_1, \ldots, n_n) \] \[P = P (s, v, n_1, \ldots, n_n) \]

Often, we would like to work with variables other than \(s, v, \ldots, n_n \). Why don't we just eliminate \(s \) by solving \([2]\) and substituting in \([1]\) to get

\[u = u (T, v, n_1, \ldots, n_n) \] \[u = u (S, V, N_1, \ldots, N_n) \]

When going from \(u (s, v, n_1, \ldots, n_n) \) to \(u (T, v, n_1, \ldots, n_n) \), we lose information!

Explanation

\[y(x) = x^2 + 5 \]

\[\frac{dy}{dx} = 2 = 2x \Rightarrow x = \frac{3}{2} \]

\[y(3) = \frac{3^2}{4} + 5 \]

\[y(x) = (x+3)^2 + 5 \]

\[\frac{dy}{dx} = 2(x+3) \Rightarrow y(3) = \frac{3^2}{4} + 5 \]

\(A \) and \(B \) are not equivalent for \(y(x) \), even though \(y(3) \) is the same in both cases!

To go from \([1]\) \(u = u (s, v, n_1, \ldots, n_n) \) to \([4]\) \(u = u (T, v, n_1, \ldots, n_n) \), we need

\[T = \left(\frac{\partial u}{\partial S} \right) v, n_1, \ldots, n_n = \delta (s, v, n_1, \ldots, n_n) \Rightarrow \]

\[S = \delta^{-1} (T, v, n_1, \ldots, n_n) \]

but to go back from \([4]\) to \([1]\) we need to integrate a Partial Differential Equation, which introduces arbitrary constants.
Solution: \textbf{Legendre Transforms}

Basis function: \[y^{(0)}(x_1, x_2, \ldots, x_n) \]
\[\frac{dy^{(0)}}{dx} = \frac{\partial y^{(0)}}{\partial x_1} + \frac{\partial y^{(0)}}{\partial x_2} + \ldots + \frac{\partial y^{(0)}}{\partial x_n} \]

First Transform:
\[y^{(1)}(3_1, x_2, \ldots, x_n) = y^{(0)} - 3_1 x_1 \]
\[\frac{dy^{(1)}}{dx} = -x_1 \frac{\partial y^{(0)}}{\partial x_1} + \frac{\partial y^{(0)}}{\partial x_2} + \ldots + \frac{\partial y^{(0)}}{\partial x_n} \]

Or, in a neat table:
\[
\begin{array}{ccc}
 y^{(0)} & y^{(1)} \\
 x_1 & \beta_1 & 3_1 & -x_1 \\
 x_2 & \beta_2 & x_2 & 3_2 \\
 \vdots & \vdots & \vdots & \vdots \\
 x_n & \beta_n & x_n & 3_n \\
\end{array}
\]

Reverse transform:
\[y^{(0)} = y^{(1)} + 3_1 x_1 \]

Example: 1D (0 component system - impossible)

\[y^{(0)}(x) = x^2 + 5 \]
\[\frac{dy^{(0)}}{dx} = 2x \]

\[y^{(1)}(\beta) = \frac{\beta^2}{4} + 5 - \frac{3^2}{2} = -\frac{\beta^2}{4} + 5 \]

revers transform
\[\frac{dy^{(1)}}{d\beta} = -x = -\frac{3}{2} \Rightarrow y^{(0)}(x) = y^{(1)}(\beta) + x\beta = -x^2 + 5 + 2x^2 = x^2 + 5 \]

\[y^{(0)} = \sin(x) + x^2/9 \]
\[\frac{dy^{(0)}}{dx} = 3 = \cos(x) + \frac{2x}{9} \]

No analytical solution possible, invert numerically.
\[y(q) = \sin(\alpha) + \frac{x^2}{q} \]